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Abstract
Purpose Reliable measurement of lymph nodes (LNs) in multi-parametric MRI (mpMRI) studies of the body plays a major
role in the assessment of lymphadenopathy and staging of metastatic disease. Previous approaches do not adequately exploit
the complementary sequences in mpMRI to universally detect and segment lymph nodes, and they have shown fairly limited
performance.
Methods We propose a computer-aided detection and segmentation pipeline to leverage the T2 fat-suppressed (T2FS) and
diffusion-weighted imaging (DWI) series from a mpMRI study. The T2FS and DWI series in 38 studies (38 patients) were
co-registered and blended together using a selective data augmentation technique, such that traits of both series were visible
in the same volume. A mask RCNN model was subsequently trained for universal detection and segmentation of 3D LNs.
Results Experiments on 18 test mpMRI studies revealed that the proposed pipeline achieved a precision of∼ 58%, sensitivity
of ∼ 78% at 4 false positives (FP) per volume, and dice score of ∼ 81%. This represented an improvement of ≥ 12% in
precision, ≥ 15% in sensitivity at 4FP/volume, and ≥ 14% in dice score, respectively, over current approaches evaluated on
the same dataset.
Conclusion Our pipeline universally detected and segmented both metastatic and non-metastatic nodes in mpMRI studies.
At test time, the input data used by the trained model could either be the T2FS series alone or a blend of co-registered T2FS
and DWI series. Contrary to prior work, this eliminated the reliance on both the T2FS and DWI series in a mpMRI study.

Keywords MRI · T2 · Lymph node · Detection · Segmentation deep learning

Introduction

Lymph nodes (LNs) are small structures scattered throughout
the body and are a part of the lymphatic system. Lympho-
cytes (immune cells) in LNs remove foreign material in
the body. Patients with an abnormal rise in lymphocytes
have swollen and enlarged nodes (lymphadenopathy), and
this is typically due to infection, autoimmune disease, or
malignancy. In current clinical practice, it is important to
distinguish enlarged and metastatic nodes from the non-
metastatic LNs [1, 2]. Radiologists identify suspicious nodes
through nodal size measurement with the help of established
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guidelines, such as the tumor, node, and metastasis (TNM)
criteria [1]; this helps them manage the therapeutic pathway
for patients. Among the various radiological imaging modal-
ities to visualize the LNs, multi-parametric MRI (mpMRI) is
usually preferred due to the superior soft tissue resolution
and improved contrast between fat and water [2]. Multi-
ple sequences are generally acquired during a mpMRI study
including T2-weighted fat suppression (T2FS) and diffusion-
weighted imaging (DWI) series among others. A node is
considered enlarged if its smallest diameter (along the short
axis) is greater than 10mm on an axial MRI slice.

Radiologists routinely locate and manually measure the
nodal size on T2FS series and often refer to different
sequences (DWI) for confirmation. This process can be cum-
bersome and time-consumingduring a busy clinicalworkday.
Moreover, LNs can straddle major anatomical structures
(e.g., liver, bowel, blood vessels) while having diverse shapes
and non-homogeneous appearances, and a variety of MRI
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imaging scanners from different manufacturers are also used
by institutions across the world; both these factors exacer-
bate theworkload for radiologists. To relieve the tediousness,
many automated LN measurement approaches have been
proposed [3–9]. Some focus on detecting LNs in specific
regions of body, such as the pelvis [4, 5] and rectum [3].
Other works [6–9] detect nodes only in T2FS MRI volumes.

Very fewapproaches exploit the complementary sequences
in mpMRI studies [3, 4]. Both T2FS and DWI series were
used by Zhao et al. [3]; amaskRCNNmodel [10] was trained
for LN detection and segmentation. The authors investigated
various combinations of T2FS and DWI slices (e.g., 2 T2FS
slices + 1 DWI slice) as input. In [4], a faster RCNN model
was trained on T2FS and DWI slices that were not co-
registered. It is important to note that diffusion sequences
may not always be acquired in practice, and thus, it may not
be ideal to rely heavily on their presence while developing an
approach to detect LNs in mpMRI. Therefore, an automated
computer-aided detection and segmentation pipeline to uni-
versally localize nodes in mpMRI studies of the body while
accounting for the workflow-based issues is highly desirable.

In this paper, we tackled these imaging and workflow
challenges and present a pipeline to universally detect and
segment LNs in mpMRI studies of the body. Figure1
shows an overview of the pipeline. The mpMRI studies
were acquired at our institution using various MR scanners
(Siemens, GE, Philips) and a variety of exam protocols. The
T2FS and DWI series in a study were co-registered and then
linearly interpolated together to create a blended volume
using a selective data augmentation technique. The blended
volume contained traits of both series, such as fat suppression
and diffusion restriction. The blending interpolation factor
was drawn from a beta distribution. A mask RCNN model
was trained on the blended volumes to universally detect and
segment LNs. During the testing phase, data presented to the
trained model could come from either the T2FS series alone
or from blending any available T2FS and DWI series that
were co-registered. In this manner, the model did not rely
on the presence of both T2FS and DWI series in the mpMRI
study. In contrast to prior work [3, 8], we used full-size inputs
for evaluation, and achieved amean average precision (mAP)
of ∼ 58%, sensitivity of ≥ 78% at 4 FP/volume, and a dice
score of∼ 81%. The use of mpMRI increased the sensitivity
at 4 FP/volume by ∼ 18% when compared to only using the
T2FS series as in prior works [3, 8]. Compared to previous
work [3, 8, 9], we simultaneously detect and segment LNs in
mpMRI studies.

Methods

Data The Picture Archiving and Communication System
(PACS) at our institution was queried for patients who had

undergoneMRI imaging between January 2015 and Septem-
ber 2019. Initially, a total of 383 patients (224 males and 159
females with ages between 6 and 85 years) and 500 mpMRI
studies were identified. The radiology report associated with
a study was obtained, and a natural language processing
algorithm [11] extracted the presence of metastatic and/or
non-metastatic LNs, extent, and size measurements. Each
study contained various series such as T2-weighted (T2WI)
series, T2 fat-suppressed (T2FS) series, diffusion-weighted
imaging (DWI) and apparent diffusion coefficient (ADC)
maps. However, the studies did not always contain DWI and
ADC series, and they were acquired using a variety of MR
scanners (GE, Philips, Siemens) and exam protocols. At our
institution, radiologists sized the LNs by scrolling back and
forth across the slices in the T2FS series, matched the appear-
ance of suspicious nodes in the DWI series, and measured
the largest LN extent present on a single 2D slice in the T2FS
series according to the routine clinical protocol formeasuring
LNs. LNs were measured with either the long-axis diameter
(LAD) or short-axis diameter (SAD), or both simultaneously.
As it is cumbersome for radiologists to measure the full 3D
extent of suspicious LNs during a busy clinical day, the pri-
marymeasurement ofLADandSADwasprospectivelymade
only on a single 2D slice. If only a single measurement (LAD
or SAD) was done, a radiologist conducted a quality check
to ensure that both LAD and SADmeasurements were avail-
able.

Next, 62 mpMRI studies from 55 different patients (34
males, 21 females, aged between 9 and 80 years) were used
in this work. They included 39 chest, abdomen and pelvis
studies, and 23 abdomen and pelvis studies. One radiologist
manually segmented the full 3D extent of LNs in the T2FS
series. Since LNs with a SAD ≥ 8mm should be mainly
considered as suspicious for metastasis [2], we used this
reported range for detecting and segmenting LNs. In these
studies, there were often multiple DWI sequences (minimum
1,maximum3) acquiredwith low (0–200s/mm2), intermedi-
ate (400–800s/mm2), and high (800–1400s/mm2) b-values.
For our work, we exploited all the available DWI sequences
with different b-values. As the LNs in only the T2FS series
were fully segmented, the DWI series were co-registered to
T2FS to transfer the LN annotations using an Insight Toolkit
(ITK)-based rigid registration algorithm [12]. The studies
were randomly divided on a patient-level into ∼ 70% train
(38patients, 38 studies),∼ 10%validation (6patients, 6 stud-
ies), and ∼ 20% test (11 patients, 18 studies) splits. Fivefold
cross-validation was conducted with the train and validation
sets, and the test set was held out for evaluation. N4 bias
normalization [13] was subsequently performed on the reg-
istered sequences, followed by normalization to [1%, 99%]
of the voxel intensity range [14], and histogram equalization
[15] to boost the contrast between bright and dark structures
in the volumes. The resulting series had various dimensions
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Fig. 1 Flowchart of the proposed computer-aided detection (CAD)
pipeline. First, T2FS and DWI series in an mpMRI study were co-
registered and then blended together.Next, three consecutive slices from
the resulting volume were collated to form a three-channel image. The
images were then fed to mask RCNN to detect and segment potential
LNs in each slice. Green boxes: ground truth, yellow: true positives,

red: false positives. The 2D LN candidates were then merged into 3D
based on their confidence scores as well as their IoU overlaps with
boxes in adjacent slices. The text below each detected box, e.g., “89|82”,
describes the highest confidence score across all elements of the 3D pre-
diction followed by the confidence score of the candidate box detected
in the current slice. The figure is best viewed in color in the PDF

in the range of (256 ∼ 640) × (192 ∼ 640) × (18 ∼ 60)
voxels.

Selective augmentation In prior works [3, 4], the presence
of both the T2FS and DWI sequences was required for their
approaches towork. However, the reliance on both sequences
cannot always be guaranteed as a complete MRI workup is
not always deemednecessaryby the referringphysicianor the
radiologist, and thus certain sequences may not be acquired.
To exploit the available sequences in an mpMRI study, we
used a recently proposed method by Yao et al. [16] to learn
invariant representations via selective augmentation (LISA).
LISA interpolated the training data samples which have the
same label, but were sampled from different domains (T2FS
andDWI). Co-registration of the T2FS andDWI series in our
work enabled the labels (bounding boxes andmasks) from the
T2FS series to be transferred to the DWI series. Crucially,
we used Intra-Label LISA (ILL) to blended the T2FS and
DWI sequences together, such that traits of both sequences
(e.g., diffusion restriction and fat suppression) are visible in
the same volume. The blending is rooted in the MixUp [17]
and CutMix [18] techniques, which linearly interpolate train-
ing data samples and remove any correlations [19] between
the domain and labels. Through our simple trick, the mask
RCNNmodel learned invariant predictors for LNs. Formally,
we assume that two data samples (xi , yi , di ) and (x j , y j , d j )
are drawn from two distinct domains di and d j . The two
samples can be linearly interpolated according to:

xm = λxi + (1 − λ)x j and ym = λyi + (1 − λ)y j (1)

θ̂ := argmin
θ∈�

E{(xi ,yi ,di ),(x j ,y j ,d j )∼P̂}
[
l( fθ (xm), ym)

]
(2)

whereλ ∈ [0, 1] is the interpolation ratio sampled fromabeta
distribution Beta(α, β) and dictates the strength of volumet-
ric blending. Since the label (bounding box and mask) is the
same yi = y j for the co-registeredT2FSandDWI sequences,
interpolation of the data samples results in volumes where
characteristics of both domains are partially present and any
spurious correlations that exist between the domains and
labels are removed. Examples are shown in Figs. 1 and 2.
This gives rise to an empirical risk minimization setting as in
Eq. 2 where given a training distribution Ptr , a loss function l
is used to train a model fθ to optimize its parameters θ ∈ �.
As the parameters of the beta distribution govern the blend-
ing ratio λ, it permitted the use of either the T2FS sequence
alone or a combination of T2FS and DWI series. If a study
did not contain the DWI series, then ILL was not applied.
The model encountered diverse examples during training to
enhance robustness against noise at the test time. Experi-
ments conducted in “Experiments and results” section attest
to the advantage of using our elegant selective augmenta-
tion approach for LN detection. For training the model, 2.5D
images were extracted from the blended volume and each
image contained three consecutive slices from the volume
with the annotated LNs present in the slice in the middle.
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Fig. 2 LN detection and segmentation results for different slices
obtained from distinct mpMRI studies used in this work. The detections
and segmentations are shown for a small LN (8mm), a medium sized
LN (1.2cm), and a large LN (2.3cm). Green—ground truth, red—false

positives, and yellow—true positives. The text below each detected box,
e.g., “91|32”, describes the highest confidence score across all elements
of the 3D prediction followed by the confidence score of the candidate
box detected in the current slice

Mask RCNN The standard design of the mask RCNN [10]
framework consists of a backbone network, Feature Pyramid
Network (FPN) [20], Region Proposal Network (RPN) [21],
and a network head. Traditionally, the backbone has been
based on ResNet models [22] (e.g., ResNet-50 or ResNet-
101), but in our work we replaced it with the general-purpose
Swin Transformer backbone [23]. The rationale behind this
was due to the hierarchical feature maps computed by the
Swin transformer; they have the same dimensions as those
obtained from standard backbones, e.g., ResNet. These hier-
archical feature maps were estimated by first splitting the

input image into small-sized image patches in shallower lay-
ers and merging neighboring patches in deeper layers. A
fixed number of image patches were then taken to consti-
tute a window, within which self-attention was computed
locally. Shifted window partitioning also introduced con-
nections across neighboring windows that increased the
representationmodeling power while also maintaining linear
computation complexity. For more details on the implemen-
tation, we refer the reader to [23]. Through experiments
described in “Experiments and results” section, we show that
the mask RCNN model was able to achieve higher precision
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and sensitivities at different FP with the Swin transformer
backbone. The FPN of mask RCNN was used to detect
LNs appearing at multiple scales, and the RPN shared the
extracted features of the full slice with the head network,
which obtained effective target LN candidates for detection
and segmentation. Moreover, as mask RCNN can generate
numerous false positives (FP), Hard Negative Example Min-
ing [24] was employed to reduce the FP number and boost
performance. After the model had been trained, Weighted
Boxes Fusion [25] was used to combine the various pre-
dictions from the checkpoint with the lowest validation loss
during each cross-validation run of the mask RCNN model.

3D proposal generation The 2D proposals generated by
mask RCNN in every slice of the blended volume were
later post-processed into 3D predictions. We followed the
Kalman filter-based bounding box tracking approach [26,
27] to obtain the 3D proposals. The 2D predictions were
first filtered to keep boxes with scores ≥ 10% and eliminate
those with lower scores. Next, we stacked the 2D predic-
tions together from pairs of adjacent slices when their IoU
score was ≥ 25% to create the 3D proposals; we chose this
threshold as it accounted for large variations in voxel sizes
(especially along the z-axis) for volumes acquired by dif-
ferent scanners. Finally, we filtered the clusters based on
the maximum confidence score available in that cluster and
removed those that did not cross a confidence threshold of
30%. We chose this value in order to keep the number of 3D
predictions manageable.

Experiments and results

Baseline comparisons We coined our main experiment for
LN detection and segmentation ESA; we used selective aug-
mentation to create a blended volume with co-registered
T2FS and DWI series based on Beta(60, 10), and a Swin
transformer backbone. In our first experiment, we compared
our results against those obtained byWang et al. [8], wherein
a mask RCNN model for universal LN detection and seg-
mentation was trained with only T2FS volumes. For the next
series of experiments, we contrasted our results against the
various data combinations proposed by Zhao et al. [3]. These
included: (1) 3-slices of only T2FS (ET ), (2) 3-slices of only
DWI (ED), (3) 1-slice of T2FS and 2-slices of DWI (E12),
and (4) 2-slices of T2FS and 1-slice of DWI (E21). A mask
RCNNmodel was also used by Zhao et al. [3]. We also com-
pared thedetection-only performance for the ensemble-based
approach proposed by Mathai et al. [9] for T2FS-only data;
segmentation dice scores were unavailable as this approach
purely detected LNs in T2FS only. Furthermore, we assessed
one of the main contributions in our work: selective data
augmentation through blending. As the Beta distribution
governed the blending process, we evaluated the effect of

the choice of its parameters. These included Beta(α, β)

with: (1) Beta(2, 2), (2) Beta(1, 1), (3) Beta(4, 4), and
(4) Beta(60, 10), which heavily favored the T2FS series.
Next, we also evaluated the performance with the use of a
ResNet-50 backbone instead of the Swin transformer back-
bone. Finally, we compared the performance of our main
experiment ESA against a baseline approach (Swin trans-
former backbone) trained and tested only on T2FS series.

Metrics Prior approaches [3, 8] operated on 2D measure-
ments of LAD and SAD, and they reported their results
based on these 2D measurements. This did not reflect the
true performance of a LN detection and segmentation model.
Any correct predictions made by the network on any unmea-
sured node in the same slice or the adjacent slice(s) would
be counted as false positives when they should actually be
counted as true positive predictions instead. Furthermore, we
believe that automatedmethods should process the entire vol-
ume and report results on a volumetric level as opposed to a
slice-based level. These results will reflect the true nature
of the nodal detection performance, and to that end, we
adopt the pseudo-3D (P3D) IoU metric proposed in [27].
Specifically, we denote the slice containing the 2D annota-
tion by the radiologist as z and the corresponding bounding
box that resulted from that measurement as (x1, x2, y1,
y2, z, z). We represent a 3D prediction by (x∗

1 , x
∗
2 , y∗

1 ,
y∗
2 , z

∗
1, z

∗
2). The P3D IoU metric assigns a 3D prediction

as a true positive if and only if z∗1 ≤ z ≤ z∗2 and the
IoU

[
(x1, x2, y1, y2), (x∗

1 , x
∗
2 , y

∗
1 , y

∗
2 )

] ≥ 50%. Otherwise,
the 3D prediction was a false positive. For more information
regarding the P3D IoU metric, we refer the reader to [27].
We also used mean average precision (mAP) and the dice
similarity coefficient (DSC) score to quantify the detection
and segmentation performance, respectively.

Implementation details For consistent comparison across all
works, we did not crop our slices and used the full-sized
images as training inputs. Training of themask RCNNmodel
was accomplished with the mmDetection framework [28].
Outside of selective augmentation, standard data augmen-
tation strategies were also done (e.g., random horizontal
flips, crops, rotations etc.). Pre-trained weights were used
for all models to speed up convergence during training. A
grid search run across traininghyper-parameters yieldedopti-
mal values for the learning rate (1e−5), optimizer (AdamW),
batch size (2), and number of iterations (36). Fivefold cross-
validation was performed for each comparative method. For
each cross-validation fold, the checkpoint with lowest val-
idation loss was chosen for testing. An ensemble of the 5
checkpoints from the 5 runs was used during prediction/test
phase to locate and segment the LNs. All experiments were
run on a workstation running Ubuntu 18.04LTS with 4
NVIDIA Tesla V100 GPUs. Evaluation was always per-
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formed at an IoU threshold of 25% to be consistent with
prior work [8].

Results Based on prior work by [3, 8, 9], a clinically accept-
able result for LN detectionmeant a sensitivity of 65% at 4–6
FP per volume. Table 1 summarizes the detection and seg-
mentation performance for the mask RCNN model across
all experiments. Our main experiment ESA (row 6: selective
augmentation with Beta(60, 10) and a Swin Transformer
backbone) achieved the best LN detection and segmenta-
tion performance of ∼ 58% mAP, ∼ 78% sensitivity at 4
FP/volume, and dice score of ∼81% over other approaches.
The experiment ET that used T2FS-only provided a sensi-
tivities of ∼ 52% and ∼ 56% at 4 FP/vol for [8] and [3],
respectively. The experiment ED that used DWI-only alone
yielded low LN detection sensitivities of ∼ 48% at 4FP/vol.
These results are not surprising as the tissue structures in
DWI series appear diffused with poor spatial resolution in
contrast to the T2FS series.

Zhao et al. [3] found that their experiment E12 with a data
combination of 1 T2FS slice and 2 DWI slices worked best.
Contrary to their findings, we observed that the experiment
E21 with the data combination of 2 T2FS slices and 1 DWI
slice generally performed better than E12, ET and ED. This
may be due to the images being cropped around the rectum
in their work [3], thereby limiting the contextual information
available to the network from the provision of full-sized input
images. Comparing the detection-only performance against
the ensemble method proposed by [9], we see that our preci-
sion and sensitivity at 4 FP/vol improved by∼ 4%and∼ 3%,
respectively. Overall, our main results with the selective aug-
mentation experiment ESA showed a marked improvement
in LN detection and segmentation sensitivities.

Moreover, Table 2 shows the comparative results where
we used our trained mask RCNN model to predict on solely
T2FS input data (row 2). We noticed that the results were
similar in comparison to using blending with both T2FS and
DWI series. These results support our idea that the model
could be trained on studies containing both T2FS and DWI
series, but it did not require the DWI series to be present at
test time. Comparing our results against the baseline mask
RCNN (Swin transformer backbone) trained and test on
T2FS-only data (row 3), we found that the precision, sen-
sitivity at 4 FP/vol, and dice score improved by∼ 5%,∼ 7%
and ∼ 10%, respectively. Additionally, there was a decrease
in mAP (−13%), sensitivity at 4 FP/vol (−18%), and dice
score (−16%), respectively, with the use of the ResNet-50
backbone (row 4) instead of the Swin Transformer. Finally,
experimenting with different beta distribution parameters
(rows 5–7) yielded lower results for all tested parameters
except for Beta(60, 10); we believe that this is due to the
probabilities being drawn from a distribution that heavily
favored the T2FS series.

Discussion and conclusion

Our approach exploits complementary sequences in mpMRI
to universally detect and segment lymph nodes, whereas pre-
vious approaches either did not use diffusion sequences [8,
9] and the detection and segmentation performance was not
adequate for clinical needs [3]. In current practice, local-
ization and measurement of LNs in mpMRI studies is a
repetitive task that is routinely performed by radiologists.
Universal detection and segmentation of LNs with an auto-
mated pipeline, such as the one proposed in our work, can
speed up the nodal localization with SAD ≥ 8mm as the
ensuing measurements help to differentiate metastatic from
non-metastatic nodes.

Patient studies used in this work were acquired with dif-
ferent imaging scanners and exam protocols, but the full
mpMRI workup (including diffusion sequences) were not
always acquired. To handle such scenarios, our pipeline was
trained on mpMRI studies containing T2FS and DWI series,
but it did not require the diffusion sequence to be available at
test time. The T2FS and DWI series were co-registered, and
selective data augmentation blended the two series together
using an interpolation ratio λ that was drawn from a Beta
distribution Beta(60, 10). Blending the two series together
promoted the use of complementary information available
in both series, such as fat suppression and diffusion restric-
tion. It also closely mimicked the current practice where
radiologists referred to co-registeredDWI sequences for con-
firmation of LN presence in the T2FS series.

Ourwork stands in comparison to priorworks [3, 4],where
various data combinations were necessary to achieve reason-
able performance. Utilizing the different data combinations
(e.g., E21, E12) proposed by Zhao et al. [3] was inelegant
in contrast to the blending-based approach proposed in our
work. We have also observed that the ensemble-based detec-
tion method proposed by Mathai et al. [9] holds promise;
the ensemble of networks in their work detected LNs with
reasonable improvements over [3, 8]. A similar ensemble-
based approach for simultaneous detection and segmentation
ofLNs could potentially improve performance. Finally, train-
ing and testing on the mask RCNN (with Swin transformer
backbone) on T2FS-only data yielded lower detection and
segmentation performance in contrast to training with both
T2FS + DWI series. Despite structures in the DWI series
appearing diffused with poor spatial resolution, our results
show that the inclusion of the DWI sequence does provide
some additional supervision during training for the mask
RCNN model.

However, our results do indicate some false positives
shown by the red boxes in Figs. 1 and 2. Insufficient regis-
tration of the volumes is a potential reason for false positives
as we only rigidly register the T2FS and DWI series to
roughly align them and to have consistent spacing, origin,
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Table 1 Performance
comparison of approaches on
the test set

# Method Exp Mode mAP S@0.5 S@1 S@2 S@4 Dice

1 Wang 2022 (2D) [8] ET T2FS only 43.6 17.8 23.3 34.2 51.7 57.4

2 Zhao 2020 (3D) [3] ET T2FS only 39.5 23.9 31.5 46.5 56.2 54.3

3 Zhao 2020 (3D) [3] ED DWI only 37.7 24.1 30.1 39.7 47.9 47.6

4 Zhao 2020 (3D) [3] E12 NSA 39.8 21.9 34.3 43.8 60.2 59.7

5 Zhao 2020 (3D) [3] E21 NSA 43.8 26.1 36.6 47.9 61.4 62.2

6 Mathai 2022 (3D) [9] ET NSA 53.4 36.3 51.9 62.6 75.2 –

7 Mask RCNN (Ours) ESA ILL 57.7 39.7 53.4 64.4 78.1 81.2

“Exp” stands for the abbreviation of the experiment name. “Mode” describes the {T2FS, DWI} data combi-
nation mode. “SA” and “NSA” indicate selective and no selective augmentation, respectively. “ILL” stands
for Intra-Label LISA. “S” describes the sensitivity @[0.5, 1, 2, 4] FP/volume. Bold indicates best results

Table 2 Comparative
experiments of the mask RCNN
model

# Method Exp mAP S@0.5 S@1 S@2 S@4 Dice

1 Ours (Swin + SA) ESA 57.7 39.7 53.4 64.4 78.1 81.2

2 Swin + SA (test on T2FS only) ESA 57.1 38.2 50.7 63.1 76.3 80.5

3 Swin (train/test on T2FS only) ET 52.3 33.6 47.1 58.3 71.8 70.9

4 ResNet-50 ESA 44.9 27.4 34.3 50.7 60.3 64.6

5 Beta(1, 1) ESA 52.5 35.6 41.1 47.9 69.9 72.3

6 Beta(2, 2) ESA 52.7 27.4 45.2 58.9 71.2 74.4

7 Beta(4, 4) ESA 51.9 34.5 45.2 60.3 73.9 71.6

“Exp” stands for the abbreviation of the experiment name with “SA” indicating selective augmentation. “S”
describes the sensitivity @[0.5, 1, 2, 4] FP/volume. Bold indicates best results

and dimensions. Other factors include the similar intensity
(iso-intensity) of the LN on high b-value DWI to surround-
ing structures, such as the bowel, and the overlap of LN with
vessels that contributed to the partial volumetric averaging
of such regions into the LN areas. However, when our results
were contrasted against those results generated through dif-
ferent data combinations (e.g., E21 in “Experiments and
results” section), we found our results to outperform current
state-of-the-art methods. Additionally, the training data used
in this work was limited; while selective data augmentation
was conducted in this paper to increase data diversity, addi-
tional data should be acquired to account for robustness. For
future work, we plan employ self-supervision in the model,
whereby additional LNs aremined in the unannotated studies
obtained from PACS and integrated into the training dataset
to further improve the detection and segmentation perfor-
mance.
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